Topic:Multi Label Classification
What is Multi Label Classification? Multi-label classification is the task of assigning labels to entities where multiple labels may be assigned to each entity, allowing it to belong to more than one category simultaneously.
Papers and Code
Aug 12, 2025
Abstract:In this work, we propose two methods to design zero constellations for binary modulation on conjugate-reciprocal zeros (BMOCZ). In the first approach, we treat constellation design as a multi-label binary classification problem and learn the zero locations for a direct zero-testing (DiZeT) decoder. In the second approach, we introduce a neural network (NN)-based decoder and jointly learn the decoder and zero constellation parameters. We show that the NN-based decoder can directly generalize to flat-fading channels, despite being trained under additive white Gaussian noise. Furthermore, the results of numerical simulations demonstrate that learned zero constellations outperform the canonical, Huffman BMOCZ constellation, with the proposed NN-based decoder achieving large performance gain at the expense of increased computational complexity.
* This work has been accepted for presentation at IEEE PIMRC Workshops
- Emerging Modulation Techniques Towards 6G Networks 2025
Via

Aug 11, 2025
Abstract:Multi-label classification (MLC) of medical images aims to identify multiple diseases and holds significant clinical potential. A critical step is to learn class-specific features for accurate diagnosis and improved interpretability effectively. However, current works focus primarily on causal attention to learn class-specific features, yet they struggle to interpret the true cause due to the inadvertent attention to class-irrelevant features. To address this challenge, we propose a new structural causal model (SCM) that treats class-specific attention as a mixture of causal, spurious, and noisy factors, and a novel Information Bottleneck-based Causal Attention (IBCA) that is capable of learning the discriminative class-specific attention for MLC of medical images. Specifically, we propose learning Gaussian mixture multi-label spatial attention to filter out class-irrelevant information and capture each class-specific attention pattern. Then a contrastive enhancement-based causal intervention is proposed to gradually mitigate the spurious attention and reduce noise information by aligning multi-head attention with the Gaussian mixture multi-label spatial. Quantitative and ablation results on Endo and MuReD show that IBCA outperforms all methods. Compared to the second-best results for each metric, IBCA achieves improvements of 6.35\% in CR, 7.72\% in OR, and 5.02\% in mAP for MuReD, 1.47\% in CR, and 1.65\% in CF1, and 1.42\% in mAP for Endo.
* Early accepted by MICCAI 2025
Via

Aug 11, 2025
Abstract:Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
* 14 pages, 7 tables, 2 figures
Via

Aug 12, 2025
Abstract:The emergence of audio-visual foundation models underscores the importance of reliably assessing their multi-modal understanding. The VGGSound dataset is commonly used as a benchmark for evaluation audio-visual classification. However, our analysis identifies several limitations of VGGSound, including incomplete labelling, partially overlapping classes, and misaligned modalities. These lead to distorted evaluations of auditory and visual capabilities. To address these limitations, we introduce VGGSounder, a comprehensively re-annotated, multi-label test set that extends VGGSound and is specifically designed to evaluate audio-visual foundation models. VGGSounder features detailed modality annotations, enabling precise analyses of modality-specific performance. Furthermore, we reveal model limitations by analysing performance degradation when adding another input modality with our new modality confusion metric.
* Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) 2025
Via

Aug 12, 2025
Abstract:Recent Multi-Modal Large Language Models (MLLMs) have demonstrated strong capabilities in learning joint representations from text and images. However, their spatial reasoning remains limited. We introduce 3DFroMLLM, a novel framework that enables the generation of 3D object prototypes directly from MLLMs, including geometry and part labels. Our pipeline is agentic, comprising a designer, coder, and visual inspector operating in a refinement loop. Notably, our approach requires no additional training data or detailed user instructions. Building on prior work in 2D generation, we demonstrate that rendered images produced by our framework can be effectively used for image classification pretraining tasks and outperforms previous methods by 15%. As a compelling real-world use case, we show that the generated prototypes can be leveraged to improve fine-grained vision-language models by using the rendered, part-labeled prototypes to fine-tune CLIP for part segmentation and achieving a 55% accuracy improvement without relying on any additional human-labeled data.
Via

Aug 08, 2025
Abstract:Federated learning (FL) enables the collaborative training of deep neural networks across decentralized data archives (i.e., clients), where each client stores data locally and only shares model updates with a central server. This makes FL a suitable learning paradigm for remote sensing (RS) image classification tasks, where data centralization may be restricted due to legal and privacy constraints. However, a key challenge in applying FL to RS tasks is the communication overhead caused by the frequent exchange of large model updates between clients and the central server. To address this issue, in this paper we propose a novel strategy (denoted as FedX) that uses explanation-guided pruning to reduce communication overhead by minimizing the size of the transmitted models without compromising performance. FedX leverages backpropagation-based explanation methods to estimate the task-specific importance of model components and prunes the least relevant ones at the central server. The resulting sparse global model is then sent to clients, substantially reducing communication overhead. We evaluate FedX on multi-label scene classification using the BigEarthNet-S2 dataset and single-label scene classification using the EuroSAT dataset. Experimental results show the success of FedX in significantly reducing the number of shared model parameters while enhancing the generalization capability of the global model, compared to both unpruned model and state-of-the-art pruning methods. The code of FedX will be available at https://git.tu-berlin.de/rsim/FedX.
Via

Aug 11, 2025
Abstract:Accurate detection and classification of diverse door types in floor plans drawings is critical for multiple applications, such as building compliance checking, and indoor scene understanding. Despite their importance, publicly available datasets specifically designed for fine-grained multi-class door detection remain scarce. In this work, we present a semi-automated pipeline that leverages a state-of-the-art object detector and a large language model (LLM) to construct a multi-class door detection dataset with minimal manual effort. Doors are first detected as a unified category using a deep object detection model. Next, an LLM classifies each detected instance based on its visual and contextual features. Finally, a human-in-the-loop stage ensures high-quality labels and bounding boxes. Our method significantly reduces annotation cost while producing a dataset suitable for benchmarking neural models in floor plan analysis. This work demonstrates the potential of combining deep learning and multimodal reasoning for efficient dataset construction in complex real-world domains.
Via

Aug 08, 2025
Abstract:Precise jailbreak evaluation is vital for LLM red teaming and jailbreak research. Current approaches employ binary classification ( e.g., string matching, toxic text classifiers, LLM-driven methods), yielding only "yes/no" labels without quantifying harm intensity. Existing multi-dimensional frameworks ( e.g., Security Violation, Relative Truthfulness, Informativeness) apply uniform evaluation criteria across scenarios, resulting in scenario-specific mismatches--for instance, "Relative Truthfulness" is irrelevant to "hate speech"--which compromise evaluation precision. To tackle these limitations, we introduce SceneJailEval, with key contributions: (1) A groundbreaking scenario-adaptive multi-dimensional framework for jailbreak evaluation, overcoming the critical "one-size-fits-all" constraint of existing multi-dimensional methods, and featuring strong extensibility to flexibly adapt to customized or emerging scenarios. (2) A comprehensive 14-scenario dataset with diverse jailbreak variants and regional cases, filling the long-standing gap in high-quality, holistic benchmarks for scenario-adaptive evaluation. (3) SceneJailEval achieves state-of-the-art results, with an F1 score of 0.917 on our full-scenario dataset (+6% over prior SOTA) and 0.995 on JBB (+3% over prior SOTA), surpassing accuracy limits of existing evaluation methods in heterogeneous scenarios and confirming its advantage.
Via

Aug 06, 2025
Abstract:Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
* 16 pages, 6 figures
Via

Aug 07, 2025
Abstract:Electroencephalogram (EEG)-based emotion recognition holds significant value in affective computing and brain-computer interfaces. However, in practical applications, EEG recordings are susceptible to the effects of various physiological artifacts. Current approaches typically treat denoising and emotion recognition as independent tasks using cascaded architectures, which not only leads to error accumulation, but also fails to exploit potential synergies between these tasks. Moreover, conventional EEG-based emotion recognition models often rely on the idealized assumption of "perfectly denoised data", lacking a systematic design for noise robustness. To address these challenges, a novel framework that deeply couples denoising and emotion recognition tasks is proposed for end-to-end noise-robust emotion recognition, termed as Feedback-Driven Collaborative Network for Denoising-Classification Nexus (FDC-Net). Our primary innovation lies in establishing a dynamic collaborative mechanism between artifact removal and emotion recognition through: (1) bidirectional gradient propagation with joint optimization strategies; (2) a gated attention mechanism integrated with frequency-adaptive Transformer using learnable band-position encoding. Two most popular EEG-based emotion datasets (DEAP and DREAMER) with multi-dimensional emotional labels were employed to compare the artifact removal and emotion recognition performance between ASLSL and nine state-of-the-art methods. In terms of the denoising task, FDC-Net obtains a maximum correlation coefficient (CC) value of 96.30% on DEAP and a maximum CC value of 90.31% on DREAMER. In terms of the emotion recognition task under physiological artifact interference, FDC-Net achieves emotion recognition accuracies of 82.3+7.1% on DEAP and 88.1+0.8% on DREAMER.
Via
